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Abstract Counterbalanced designs are frequently used in the
behavioral sciences. Studies often counterbalance either the
order in which conditions are presented in the experiment or
the assignment of stimulus materials to conditions.
Occasionally, researchers need to simultaneously counterbal-
ance both condition order and stimulus assignment to condi-
tions. Lewis (1989; Behavior Research Methods, Instruments,
& Computers 25:414-415, 1993) presented a method for
constructing Latin squares that fulfill these requirements.
The resulting Latin squares counterbalance immediate se-
quential effects, but not remote sequential effects. Here, we
present a new method for generating Latin squares that simul-
taneously counterbalance both immediate and remote sequen-
tial effects and assignment of stimuli to conditions. An
Appendix is provided to facilitate implementation of
these Latin square designs.
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Researchers from such diverse fields as cognitive psychology,
neuroscience, political science, clinical science, movement
science, and human factors research frequently counterbal-
ance condition order to prevent the effects of general practice,
fatigue, or other unwanted order effects from causing differ-
ences between conditions. Counterbalancing is generally
achieved by creating Latin squares. Table 1 shows a Latin
square that counterbalances condition order. In the Latin
square, each condition (represented by a letter) occurs once
in each row (i.e., for each participant) and once in each column

(i.e., on each ordinal position). Note, however, that each
condition is always preceded by the same other condition
(e.g., condition B is always preceded by condition A). Thus,
the Latin square in Table 1 counterbalances ordinal position,
but not immediate sequential effects.

In this article, we discuss methods that counterbalance
sequential effects in addition to ordinal position. Sequential
effects occur when performance in a condition is affected by
the condition(s) preceding it. For example, a particularly
difficult condition may induce a negative affective state that
lingers for some time and negatively influences performance
in the condition presented after it. If the same conditions
follow each other for each participant (e.g., condition B al-
ways follows condition A), comparisons of performance in
the different conditions may be tainted. Imagine, for example,
that one uses the Latin square shown in Table 1 and that
condition A exerts a negative influence on performance in
the condition immediately following it. Because condition B
always follows condition A, performance in condition B will
be underestimated relative to the other conditions (i.e., C, D,
E, and F). Performance in a condition can be affected by a
condition immediately preceding it (i.e., an immediate sequen-
tial effect) or by a condition preceding it by two or more
positions in the sequence of conditions (i.e., a remote sequen-
tial effect). Studies have shown that immediate and remote
sequential effects do, in fact, occur and affect diverse depen-
dent variables such as category judgments (Petzold &
Haubensak, 2001), memory judgments (Malmberg & Annis,
2012), absolute identification (Stewart, Brown, & Chater,
2005), skill acquisition (Matlen, & Klahr, 2013),
questionnaire-based measurements of shame (Faulkner &
Cogan, 1990), and the taste of food and wine (Durier,
Monod, & Bruetschy, 1997; Schlich, 1993). Such widespread
findings of sequential effects indicate that it is safer to control
for sequential effects than to simply assume (or hope) that
sequential effects won’t affect the results. Thus, rather than
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using a type of Latin square such as the one shown in Table 1,
which counterbalances ordinal position, but not sequential
effects, we recommend using Latin squares that counterbal-
ance sequential effects in addition to ordinal position.

Several methods have been developed for counterbalancing
immediate sequential effects in addition to ordinal position
(Bradley, 1958; Wagenaar, 1969; Williams, 1949). The Latin
square in Table 2 is constructed according to a method pro-
posed by Bradley. In this method, the top row of the square is
constructed as A, N, B, N − 1, C, N − 2, and so on, where N is
the total number of conditions. Subsequent rows are created by
putting the next letter in the alphabetical sequence below each
letter of the preceding row. An important property of the Latin
square in Table 2 is that across participants, no condition is
preceded (and followed) more than once by another condition,
a property that has been referred to as ‘’digram-balanced”
(Wagenaar, 1969). Note that the Latin square shown in
Table 2 counterbalances immediate sequential effects, but not
remote sequential effects. Latin squares that counterbalance
remote sequential effects exist for some situations and are
discussed later. Latin squares are often discussed in the context
of counterbalancing order effects but are also used to counter-
balance the assignment of stimulus materials to conditions.
Counterbalancing stimulus assignment to conditions elimi-
nates confounds in item difficulty between the different

conditions of the experiment (e.g., Pollatsek & Well, 1995)
and plays an important role in the design of many behavioral
experiments.

In some experiments, both the condition order and
assignment of stimulus materials to conditions need to be
counterbalanced. For example, de Jonge, Tabbers, Pecher,
and Zeelenberg (2012) studied the effect of presentation
rate on paired-associate learning. Word pairs (e.g.,
hammer–elevator) were presented for a total study time
of 16 s in five blocks with different presentation rates
(i.e., 16 × 1 s, 8 × 2 s, 4 × 4 s, 2 × 8 s, and 1 × 16 s).
Presentation rate was blocked so that within each block
the presentation rate was constant. After study, one word
of each pair (e.g., hammer–?) was presented in a cued
recall test, and participants had to report the corresponding
target word (e.g., elevator). To sensibly compare perfor-
mance under different presentation rate conditions, the
order of conditions (blocks) needs to be counterbalanced.
Moreover, for obvious reasons, a single participant cannot
study the same word pair in each of the five conditions.
The stimuli must therefore be divided into separate stim-
ulus sets that are assigned to the different presentation rate
conditions. Because word pairs differ in how easy they are
to learn (e.g., Nelson & Dunlosky, 1994), the assignment
of stimulus materials to conditions also needs to be
counterbalanced (i.e., in addition to condition order). A
combination of all possible condition orders and all pos-
sible stimulus assignments to conditions results in n! × n!
permutations (giving 14,400 permutations for an experi-
ment with five conditions). As a result, in all but the
simplest designs, using all possible permutations is practi-
cally impossible.

A more useful approach to this problem is to use a Latin
square design that counterbalances both condition order and
assignment of stimuli to conditions. A solution to this problem
is provided by Lewis (1989, 1993). Since the method is
somewhat easier for experiments with an odd number of
conditions, we describe that situation first. In the first step, a
pair of Latin squares representing the conditions is created
using Bradley’s (1958) method (where the second square is
the vertically mirrored version of the first square). In the
second step, a pair of Latin squares representing the stimulus
sets is created. This second pair of Latin squares is a copy of
the first pair, except that numbers are used in the second pair
of Latin squares. The numbers in the second set of Latin
squares correspond to the letters of the first set of Latin squares
such that the letter A becomes the number 1, the letter B
becomes number 2, and so forth (compare the adjacent letter
and number matrices, shown below). In the third step, these
Latin squares are combined in a diagonal fashion (i.e., the first
square of letters is combined with the second square of

Table 2 Example of digram-balanced Latin square designs with six
conditions

Condition Order

A F B E C D

B A C F D E

C B D A E F

D C E B F A

E D F C A B

F E A D B C

Table 1 Example of a Latin square design with six conditions

Participant Condition Order

1, 7, … A B C D E F

2, 8, … B C D E F A

3, 9, … C D E F A B

4, 10, … D E F A B C

5, 11, … E F A B C D

6, 12, … F A B C D E

Note. Capital letters represent conditions. In a typical counterbalanced
design, each participant receives one condition order, and an equal
number of participants are tested with each condition order
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numbers and vice versa), to create two Latin squares that
counterbalance condition order and the assignment of stimu-
lus materials to conditions. The resulting Latin squares are
shown in Table 3.

The procedure is different for Latin squares with an even
number of conditions. In the first step, a pair of Latin squares
representing the conditions is created. The first Latin square is
again created using Bradley’s (1958) method. The second
Latin square representing conditions is created by swapping
each pair of adjacent columns (e.g., columns 1 and 2, columns
3 and 4, etc.) of the first Latin square. In the second step, a pair
of Latin squares representing stimulus sets is created. The first
Latin square for stimulus sets is a copy of the first Latin square
for conditions where the letters have been replaced by corre-
sponding numbers (i.e., A → 1, B → 2, etc.). The second
Latin square for stimulus sets is created by copying the second
Latin square for conditions in a similar fashion, but an addi-
tional transformation is needed. The rows of this Latin square
are rotated by one position (i.e., row 1 of this Latin square
becomes row 8, row 2 becomes row 1, row 3 becomes
row 2, etc.). The resulting matrices are shown below. In

the third step, these Latin squares are combined in a
diagonal fashion (just as before). See Table 4 for the
resulting pair of Latin squares.

The method proposed by Lewis (1989) counterbalances
condition order and the assignment of stimulus materials to
conditions for digram-balanced Latin squares constructed
with Bradley’s method. Bradley (1958) pointed out, however,
that this procedure counterbalances immediate sequential ef-
fects, but not remote sequential effects. For example, in the
Latin square shown in Table 2, condition E is twice preceded
by condition F in the second cell preceding it (see rows 1 and 2
of the Latin square). To solve this problem, Alimena (1962)

Table 3 A pair of Latin squares that counterbalances condition order and
the assignment of stimulus materials to conditions

A3 E4 B2 D5 C1

B4 A5 C3 E1 D2

C5 B1 D4 A2 E3

D1 C2 E5 B3 A4

E2 D3 A1 C4 B5

C1 D5 B2 E4 A3

D2 E1 C3 A5 B4

E3 A2 D4 B1 C5

A4 B3 E5 C2 D1

B5 C4 A1 D3 E2

Note. Capital letters represent conditions; numbers represent stimulus sets

Table 4 A pair of Latin squares that counterbalances condition order and
the assignment of stimulus materials to conditions

A1 H2 B8 G3 C7 F4 D6 E5

B2 A3 C1 H4 D8 G5 E7 F6

C3 B4 D2 A5 E1 H6 F8 G7

D4 C5 E3 B6 F2 A7 G1 H8

E5 D6 F4 C7 G3 B8 H2 A1

F6 E7 G5 D8 H4 C1 A3 B2

G7 F8 H6 E1 A5 D2 B4 C3

H8 G1 A7 F2 B6 E3 C5 D4

H1 A8 G2 B7 F3 C6 E4 D5

A2 B1 H3 C8 G4 D7 F5 E6

B3 C2 A4 D1 H5 E8 G6 F7

C4 D3 B5 E2 A6 F1 H7 G8

D5 E4 C6 F3 B7 G2 A8 H1

E6 F5 D7 G4 C8 H3 B1 A2

F7 G6 E8 H5 D1 A4 C2 B3

G8 H7 F1 A6 E2 B5 D3 C4
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developed a method for constructing Latin squares that coun-
terbalances immediate and remote sequential effects.

The method for constructing these Latin squares is some-
what complicated and perhaps best illustrated for a 10 × 10
Latin square. The first step in constructing this type of Latin
square is to fill the first column by inserting the letters
representing the conditions in ascending order. Subsequently,
fill the last column by inserting the letters in descending order.
Third, fill the cells on the diagonals with the letters that they
connect (A to A and J to J in the example below). This results
in the following partially filled matrix.

In the next step, the columns are filled by inserting letters in
ascending order starting at the A in each column that is not yet
completely filled. In the first partially filled column, insert the
letter B by skipping one row (in the matrix below, see the
columnwith number 1 above it). Then insert the letter C in this
column, again skipping one row, and so on for all letters. The
second partially filled column is filled by inserting the letter B
skipping two rows below the letter A. The letter C is then
inserted by again skipping two rows. Working your way
through the matrix from left to right, each time you shift to
the next right column, the number of rows skipped increases
by 1 (the numbers above the columns indicate the number of
rows that need to be skipped before inserting the next letter).

Whenever the bottom of the column is reached, continue
from the top of the column, but skip one row less than you
normally would for that column. For example, for the column
with the number 1 above it, the letter F is inserted on the first
row. The easiest way to implement this rule is to include the row

with numbers above the matrix in the count of the number of
rows that are skipped. After continuing from the top of the
column, insert the other letters by skipping the appropriate
number of rows for that column (e.g., in the column with the
number 2 above it, the letter E is inserted by skipping two rows).
Depending on the column, you will need to cycle through this
procedure several times before the column is completely filled.
The matrix below shows an intermediate result in which we
started once from the top of the matrix for each column.

Table 5 presents the completely filled matrix (i.e., the 10 ×
10 Latin square). As was noted by Alimena (1962), this
method works only when n + 1 is a prime number (where n
is the number of conditions). Thus, this method can be used to
construct Latin squares for experiments with 2, 4, 6, 10, 12,
16, 18, 22, 28, . . . conditions.

As was mentioned, the method proposed by Lewis (1989)
counterbalances condition order and the assignment of stimulus
materials to conditions, but this method controls only for im-
mediate sequential effects. To the best of our knowledge, no
such method has been published for designs that control for
both immediate and remote sequential effects. We therefore set
out to find a method that counterbalances condition order and
assignment of stimulusmaterials to conditions for Latin squares
that control for both immediate and remote sequential effects.
The following method provides a solution. Like the method
proposed by Lewis (1989), this method requires constructing a

Table 5 Example of a Latin square with ten conditions that controls for
both immediate and remote sequential effects

A F D C I B H G E J

B A H F G D E C J I

C G A I E F B J D H

D B E A C H J F I G

E H I D A J G B C F

F C B G J A D I H E

G I F J H C A E B D

H D J B F E I A G C

I J C E D G F H A B

J E G H B I C D F A
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pair of Latin squares. The first step involves creating a
pair of Latin squares representing conditions. The first
Latin square representing conditions is constructed using
the method of Alimena (1962). The second Latin square
representing conditions is constructed by mirroring the
first square. Note that the first square can be mirrored
along either the vertical axis or the horizontal axis,
since this gives the same result. Below is an example
for an experiment with six conditions.

The construction of the Latin squares representing
stimulus sets is somewhat complicated and involves
several operations. First, copy the first Latin square for
conditions and replace the letters with their correspond-
ing numbers (i.e., A→1, B→2, etc.). This results in the
following Latin square:

Next, two Latin squares representing stimulus sets need to
be created. The first Latin square is created by separately
mirroring the top and bottom halves of the original Latin
square along an imaginary horizontal line running through
the center of the matrix. For a 6 × 6 Latin square, this causes
rows 1 and 3 to be swapped, as well as rows 4 and 6, resulting
in the following Latin square:

The second Latin square is created by swapping the adjacent
rows of numbers from the original number Latin square but
leaving the top and bottom rows untouched. Thus, for a 6 × 6

Latin square, rows 3 and 2 are swapped, and rows 4 and 5 are
swapped, resulting in the following Latin square:

Next, the Latin squares representing conditions and the Latin
squares representing stimulus sets need to be combined to
construct a pair of Latin squares. It turns out that the two
Latin squares representing conditions and the two Latin squares
representing stimulus sets can be paired either way, as long as
each Latin square is used only once. Both possible pairings
result in a pair of Latin squares counterbalancing condition
order and assignment of stimulus materials to conditions, while
controlling for both immediate and remote sequential effects.
One of the two possible pairings is shown in Table 6.

We have no formal proof that this method works for Latin
squares of all sizes but have successfully tried it for Latin
squares up to size 16 × 16, a number that seems large enough
for all but the most ambitious experiments.

Concluding remarks and recommendations

In this article, we have discussed methods that counterbalance
sequential effects in addition to ordinal position. As has been
shown, the methods of Bradley (1958) and Alimena (1962)
can be extended to simultaneously counterbalance sequential
effects and the assignment of stimulus materials to conditions.
We recommend that researchers use counterbalancingmethods
that maximize control over sequential effects. More specifical-
ly, for studies that require simultaneous counterbalancing of

Table 6 A pair of Latin squares that counterbalance condition order and
the assignment of stimulus materials to conditions and control for both
immediate and remote sequential effects

A1 D4 E5 B2 C3 F6

B3 A5 C1 D6 F2 E4

C2 E1 A3 F4 B6 D5

D5 B6 F4 A3 E1 C2

E4 F2 D6 C1 A5 B3

F6 C3 B2 E5 D4 A1

F3 C5 B1 E6 D2 A4

E2 F1 D3 C4 A6 B5

D1 B4 F5 A2 E3 C6

C6 E3 A2 F5 B4 D1

B5 A6 C4 D3 F1 E2

A4 D2 E6 B1 C5 F3

Note. Capital letters represent conditions; numbers represent stimulus sets
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condition order and stimulus assignment to conditions, we
recommend the following.

1. Whenever possible, use the method developed in the pres-
ent article to create Latin squares that simultaneously coun-
terbalance condition order and stimulus assignment to con-
ditions. These Latin squares control for both immediate and
remote sequential effects. Note that this method can be used
only when the number of conditions + 1 is a prime number
(i.e., for experiments with 2, 4, 6, 10, 12, . . . conditions).

2. If the method developed in the present article cannot be
used, use the method proposed by Lewis (1989).

Note that either method of simultaneously coun-
terbalancing the order of conditions and assignment
of stimuli to conditions requires a pair of Latin
squares (regardless of the number of conditions).
The methods for generating these Latin squares are
somewhat complicated, but the Appendix should make
implementation easy. The Appendix presents pairs of
Latin squares for experiments with 2, 4, 6, 10, and 12
conditions that were created with the method pro-
posed here. Lewis (1989) presents Latin squares that
can be used for experiments with 3, 5, 7, or 8
conditions.

Appendix

Pairs of Latin squares that simultaneously counterbalance the
order of conditions and the assignment of stimulus materials to
conditions
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